Despre modelare probabilistă
Elemente de teoria probabilitatilor
Programare probabilistă
Simulare distribuții clasice în Python
basic MRFs with pgmpy
Motoare de inferență
Diagnoza modelelor
[BAP] Osvaldo Martin, Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ, 2nd ed., 2018 (cod disponibil aici)
[BMH] Cameron Davidson-Pilon, Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference, 2016 (versiune online aici)
[PPP] Avi Pfeffer, Practical Probabilistic Programming, 2016
[PTLS] E. T. Jaynes. Probability Theory: The Logic of Science, 2003. Primele capitole accesibile online.
[BMCP] O. A. Martin, R. Kumar, J. Lao, Bayesian Modeling and Computation in Python, 2022 (versiune online aici)
[DBDA] John K. Kruschke, Doing Bayesian Data Analysis, 2nd ed., 2015
[MPW] J.-W. van de Meent, B. Paige, H. Yang, F. Wood, An Introduction to Probabilistic Programming, arXiv:1809.10756, 2018
[PRML] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2016
[PIGM] Michael I. Jordan, Yair Weiss. Probabilistic inference in graphical models.